skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qian, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Kondo lattice materials, where localized magnetic moments couple to itinerant electrons, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, with a dramatic example being recent observations of quantum oscillations and metallic thermal conduction in insulators, implying the emergence of enigmatic charge-neutral fermions. Here, we show that thermal conductivity and specific heat measurements in insulating YbIr 3 Si 7 reveal emergent neutral excitations, whose properties are sensitively changed by a field-driven transition between two antiferromagnetic phases. In the low-field phase, a significant violation of the Wiedemann-Franz law demonstrates that YbIr 3 Si 7 is a charge insulator but a thermal metal. In the high-field phase, thermal conductivity exhibits a sharp drop below 300 mK, indicating a transition from a thermal metal into an insulator/semimetal driven by the magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures. 
    more » « less
  2. Abstract Magnetic fields have an important role in the evolution of interstellar medium and star formation 1,2 . As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse owing to the lack of suitable Zeeman probes, particularly for cold, molecular gas 3 . Here we report the detection of a magnetic field of +3.8 ± 0.3 microgauss through the H  I narrow self-absorption (HINSA) 4,5 towards L1544 6,7 —a well-studied prototypical prestellar core in an early transition between starless and protostellar phases 8–10 characterized by a high central number density 11 and a low central temperature 12 . A combined analysis of the Zeeman measurements of quasar H  I absorption, H  I emission, OH emission and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by the HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, which is necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by the HINSA. This is earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes 13,14 . 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Sudden enhancement in high‐frequency absorption is a well‐known impact of solar flare‐driven Short‐Wave Fadeout (SWF). Less understood, is a perturbation of the radio wave frequency as it traverses the ionosphere in the early stages of SWF, also known as the Doppler flash. Investigations have suggested two possible sources that might contribute to it’s manifestation: first, enhancements of plasma density in the D‐and lower E‐regions; second, the lowering of the F‐region reflection point. Our recent work investigated a solar flare event using first principles modeling and Super Dual Auroral Radar Network (SuperDARN) HF radar observations and found that change in the F‐region refractive index is the primary driver of the Doppler flash. This study analyzes multiple solar flare events observed across different SuperDARN HF radars to determine how flare characteristics, properties of the traveling radio wave, and geophysical conditions impact the Doppler flash. In addition, we use incoherent scatter radar data and first‐principles modeling to investigate physical mechanisms that drive the lowering of the F‐region reflection points. We found, (a) on average, the change in E‐ and F‐region refractive index is the primary driver of the Doppler flash, (b) solar zenith angle, ray’s elevation angle, operating frequency, and location of the solar flare on the solar disk can alter the ionospheric regions of maximum contribution to the Doppler flash, (c) increased ionospheric Hall and Pedersen conductance causes a reduction of the daytime eastward electric field, and consequently reduces the vertical ion‐drift in the lower and middle latitude ionosphere, which results in lowering of the F‐region ray reflection point. 
    more » « less
  6. Abstract Trans‐ionospheric high frequency (HF: 3–30 MHz) signals experience strong attenuation following a solar flare‐driven sudden ionospheric disturbance (SID). Solar flare‐driven HF absorption, referred to as short‐wave fadeout, is a well‐known impact of SIDs, but the initial Doppler frequency shift phenomena, also known as “Doppler flash” in the traveling radio wave is not well understood. This study seeks to advance our understanding of the initial impacts of solar flare‐driven SID using a physics‐based whole atmosphere model for a specific solar flare event. First, we demonstrate that the Doppler flash phenomenon observed by Super Dual Auroral Radar Network (SuperDARN) radars can be successfully reproduced using first‐principles based modeling. The output from the simulation is validated against SuperDARN line‐of‐sight Doppler velocity measurements. We then examine which region of the ionosphere, D, E, or F, makes the largest contribution to the Doppler flash. We also consider the relative contribution of change in refractive index through the ionospheric layers versus lowered reflection height. We find: (a) the model is able to reproduce radar observations with an root‐median‐squared‐error and a mean percentage error (δ) of 3.72 m/s and 0.67%, respectively; (b) the F‐region is the most significant contributor to the total Doppler flash (∼48%), 30% of which is contributed by the change in F‐region's refractive index, while the other ∼18% is due to change in ray reflection height. Our analysis shows lowering of the F‐region's ray reflection point is a secondary driver compared to the change in refractive index. 
    more » « less
  7. Abstract Jicamarca Radio Observatory observations and Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) simulations are used to investigate the effects of the 7 September 2005 X‐17 solar flare on 150‐km echoes, electron densities, and vertical plasma drifts. The solar flare produces a remarkably similar response in the observed 150‐km echoes and simulated electron densities. The results provide additional evidence of the relationship between the background electron density and the layering structure that is seen in 150‐km echoes. The simulations also capture a similar rapid decrease in vertical plasma drift velocity that is seen in the observations. The simulated change in vertical plasma drift is, however, weaker than the observed decrease at the longitude of Jicamarca, though it is stronger east of Jicamarca. The effect of the solar flare on the vertical plasma drifts is primarily attributed to changes in conductivity due to the enhanced ionization during the solar flare. 
    more » « less
  8. ABSTRACT The latest generation of Galactic Plane surveys is enhancing our ability to study the effects of galactic environment upon the process of star formation. We present the first data from CO Heterodyne Inner Milky Way Plane Survey 2 (CHIMPS2). CHIMPS2 is a survey that will observe the Inner Galaxy, the Central Molecular Zone (CMZ), and a section of the Outer Galaxy in 12CO, 13CO, and C18O $$(J = 3\rightarrow 2)$$ emission with the Heterodyne Array Receiver Program on the James Clerk Maxwell Telescope (JCMT). The first CHIMPS2 data presented here are a first look towards the CMZ in 12CO J = 3 → 2 and cover $${-}3^{\circ }\, \le \, \ell \, \le \, 5^{\circ }$$ and $$\mid {b} \mid \, \le \, 0{_{.}^{\circ}} 5$$ with angular resolution of 15 arcsec, velocity resolution of 1 km s−1, and rms $$\Delta \, T_A ^\ast =$$ 0.58 K at these resolutions. Such high-resolution observations of the CMZ will be a valuable data set for future studies, whilst complementing the existing Galactic Plane surveys, such as SEDIGISM, the $${Herschel}$$ infrared Galactic Plane Survey, and ATLASGAL. In this paper, we discuss the survey plan, the current observations and data, as well as presenting position–position maps of the region. The position–velocity maps detect foreground spiral arms in both absorption and emission. 
    more » « less